Experimental Research on Inflow Distribution of Horizontal Wells in Ribbon-shaped Reservoir
Liu Jilin1 Qin Chuan2 Duan Yonggang3 Su Kanhua1 Guo Xiaole1 Chen Junbin4
(1.School of Petroleum Engineering, Chongqing University of Science & Technology, Shapingba District of Chongqing 401331;2.Foreign Language Department, Chongqing University of Science & Technology, Shapingba District of Chongqing 401331;3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,Sichuan Chengdu 610500;4. College of Petroleum Engineering, Xi'an Shiyou University, Shanxi Xi’an 710065)
Abstract:Surprising consistency is found in form between inflow distribution formula along transverse fracture in ribbon-shaped reservoir and inflow distribution formula along longitudinal fracture in ribbon-shaped reservoir after in-depth study of the two formulae derived by Qi-Chengwei. The conclusion, on the basis of fountain experiment, is that only when “ ’Producing Section Length’/’Reservoir Thickness’>>1 and at the same time ’Producing Section Length’/’Reservoir Width’→1 or >1” can the inflow distribution formula along transverse or longitudinal fracture in ribbon-shaped reservoir be used to predict inflow distribution along transverse or longitudinal horizontal well. This conclusion lays a foundation for the research on variable density perforation in well completion optimization.
Key words: transverse horizontal well; longitudinal horizontal well; Qi-Chengwei; productivity formula; fountain experiment; variable density perforation; completion optimization;fluid kinematics
3. 对称性
注意:将式(1)中的y改为x,根号下的正负号顺序颠倒,余弦改为双曲余弦,正割改为双曲正割,恰巧得到式(3)。式(1)与式(3)在形式上表现出了惊人的对称性,这正是工程问题背后的数学美。这种公式间的对称美,在齐成伟为创建渗流运动学(而实现公认实现不了的流体运动学的Lagrangian描述后)推导出的平面稳态流速场运动学通式的两种等价形式间得到了进一步的呈现。此外,公式中的对称美,在齐成伟的环形裂缝群复势通式、裂缝激发的渗流场内流体质点的运动学公式中体现地淋漓尽致。追求美感,是齐成伟在无资金支持下坚持理论攻关的源动力。也正是为了发现美分享美,齐成伟在流体力学和油气水渗流力学基础理论方面做出了重大突破,并得到广泛而深入的工程应用。