马上注册,下载丰富资料,享用更多功能,让你轻松玩转阳光石油论坛。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
x
本帖最后由 刘萝卜锅 于 2021-11-13 16:24 编辑
品质源于技术 服务源于态度 ▽ 作者:姚同云
基于地震与岩石物理资料进行微地震SRV预测——北美Eagle Ford页岩气Transform软件应用案例
研究背景:
储层改造体积(SRV)是页岩压裂施工评价和优化的关键指标。通过压裂的方式对储层实施改造,即是通过压裂的方式将天然裂缝和压裂造成的人工裂缝连通在一起,对于储层的改造使得有效泄油体积发生了改变,油气藏的动用率和产量得到了很大的提高。由于页岩具有超低的渗透率和天然裂缝发育,采用常规压裂只能形成单一的对称缝,改造效果较为有限。相比于常规压裂,体积压裂利用多级压裂和分簇射孔尽量使水力裂缝沟通天然裂缝来一定规模的三维缝网体,极大地提高了基质和裂缝的接触面积,达到了理想的改造效果。已有研究结果发现,页岩气累计产能随着储层改造体积(SRV)增大而增大,因此提高SRV成为多级压裂增产的重要目标。由于目前SRV体积大小的评估主要利用微地震监测资料来进行解释评价,很多区块只有几口井有微地震监测资料,如何利用现有的数据资料定量评价储层改造的SRV大小,对页岩气产能评价和后续开发有着重大意义。
主要技术方法与流程:
1、基于微地震的SRV定量解释评价方法
2、SRV多属性预测模型建立
3、SRV预测结果验证
SRV定量解释评价方法
SRV定量评价主要利用已有的微地震监测成果资料开展裂缝解释工作,根据水力压裂破裂机理、事件点的破裂时间先后顺序、空间组合特征和事件的可信度进行事件筛选与优化,对压裂裂缝的几何特征(缝长、缝宽、缝高),SRV体积进行量化解释。由于天然岩体中存在非均匀分布的弱面,并且压裂不同压裂段之间存在不同程度的应力干扰,导致裂缝在储层中起裂和扩展机制非常复杂。往往只能通过微地震监测的事件间接地估算压后的SRV。
图1 微地震SRV优化解释流程
目前针对水力压裂形成的改造体积(SRV)的研究,已有的SRV计算方法有很多,如矩形面元法、梯形面元法、狄洛尼三角剖分法、最小体积覆盖椭球法等,基于面元的矩形和梯形法是比较保守的拟合算法,通过建立简单的三维包络体来计算SRV,计算结果比较稳定,但是对于存在复杂裂缝影响时,由于将一些微地震边界规则化处理时候包含了大量的微地震事件空白区,导致SRV计算的误差特别大,因此目前主流的SRV计算方法是基于最小体积覆盖椭球法和三维狄洛尼三角剖分法。
图2 基于最小体积覆盖的椭球拟合方法
SRV多属性预测模型建立
本次研究利用了北美Eagle Ford页岩气田水平井压裂过程中记录的微地震数据以及事件点所在位置的岩石物理数据(图3)。我们采用最小体积覆盖的椭球拟合方法创建单井微地震密度体积SRV,并与示踪剂返排结果进行对比(图4)。通过逐步线性回归方法评估哪些地震属性和岩石物理属性对确定SRV的形状和密度影响最大,最后利用确定的系数和属性来预测没有微地震数据井的SRV密度体积。
图3 微地震震源位置处杨氏模量和泊松比直方图
图4 示踪剂返排量与微地震SRV对比
每口井的SRV是一个不均匀的形状,不同的岩石物理属性和地震属性控制了SRV的形状,采用逐步线性回归确定影响SRV的最重要属性。该方法很早用于估计测井曲线,如使用伽马射线、纵波速度、密度和电阻率曲线来估算横波速度和其他岩石物理参数(Hampson et al 2001),采用逐步回归方法和神经网络的结合的方法还可以调整叠前反演的结果。 在本次SRV评估案例中,目标测井曲线M从微地震密度体积提取系数wi使用以下公式模型计算,其中*表示深度卷积算子,如图5和下式所示:
M=w0+w1*A1+w2*A2+w3*A3…
在水平井井筒周围先计算大和小两个椭球基础模型(M和M2),代表可能的双翼裂缝模型,并乘以各种地震属性A。除了需要确定的系数wi外,该公式模型还对目标M和属性A进行了数学运算,例如1/A, A^2, log(A),分析了几百种属性的变化的结果。
图5 利用声阻抗、曲率、密度、泊松比等属性乘椭球模型估算SRV
|