阳光石油网|石油技术交流|石油人论坛

 找回密码
 欢迎注册
查看: 1603|回复: 1

[书籍] Inverse Problem Theory and Methods for Model Parameter Estimation

[复制链接]
  • TA的每日心情
    开心
    2021-2-23 10:18
  • 签到天数: 25 天

    [LV.4]偶尔看看III

    发表于 2009-8-26 10:04:41 | 显示全部楼层 |阅读模式

    马上注册,下载丰富资料,享用更多功能,让你轻松玩转阳光石油论坛。

    您需要 登录 才可以下载或查看,没有账号?欢迎注册

    x
    Contents
    Preface xi
    1 The General Discrete Inverse Problem 1
    1.1 Model Space and Data Space . . . . . . . . . . . . . . . . . . . . . . 1
    1.2 States of Information . . . . . . . . . . . . . . . . . . . . . . . . . . 6
    1.3 Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
    1.4 Measurements and A Priori Information . . . . . . . . . . . . . . . . 24
    1.5 Defining the Solution of the Inverse Problem . . . . . . . . . . . . . . 32
    1.6 Using the Solution of the Inverse Problem . . . . . . . . . . . . . . . 37
    2 Monte Carlo Methods 41
    2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
    2.2 The Movie Strategy for Inverse Problems . . . . . . . . . . . . . . . . 44
    2.3 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
    2.4 Monte Carlo Solution to Inverse Problems . . . . . . . . . . . . . . . 51
    2.5 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . 54
    3 The Least-Squares Criterion 57
    3.1 Preamble: The Mathematics of Linear Spaces . . . . . . . . . . . . . 57
    3.2 The Least-Squares Problem . . . . . . . . . . . . . . . . . . . . . . . 62
    3.3 Estimating Posterior Uncertainties . . . . . . . . . . . . . . . . . . . 70
    3.4 Least-Squares Gradient and Hessian . . . . . . . . . . . . . . . . . . 75
    4 Least-Absolute-Values Criterion and Minimax Criterion 81
    4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
    4.2 Preamble: p-Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
    4.3 The p-Norm Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 86
    4.4 The 1-Norm Criterion for Inverse Problems . . . . . . . . . . . . . . 89
    4.5 The ∞-Norm Criterion for Inverse Problems . . . . . . . . . . . . . . 96
    5 Functional Inverse Problems 101
    5.1 Random Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
    5.2 Solution of General Inverse Problems . . . . . . . . . . . . . . . . . . 108
    5.3 Introduction to Functional Least Squares . . . . . . . . . . . . . . . . 108
    5.4 Derivative and Transpose Operators in Functional Spaces . . . . . . . 119
    vii
    viii Contents
    5.5 General Least-Squares Inversion . . . . . . . . . . . . . . . . . . . . 133
    5.6 Example: X-Ray Tomography as an Inverse Problem . . . . . . . . . 140
    5.7 Example: Travel-Time Tomography . . . . . . . . . . . . . . . . . . 143
    5.8 Example: Nonlinear Inversion of Elastic Waveforms . . . . . . . . . . 144
    6 Appendices 159
    6.1 Volumetric Probability and Probability Density . . . . . . . . . . . . . 159
    6.2 Homogeneous Probability Distributions . . . . . . . . . . . . . . . . . 160
    6.3 Homogeneous Distribution for Elastic Parameters . . . . . . . . . . . 164
    6.4 Homogeneous Distribution for Second-Rank Tensors . . . . . . . . . 170
    6.5 Central Estimators and Estimators of Dispersion . . . . . . . . . . . . 170
    6.6 Generalized Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . 174
    6.7 Log-Normal Probability Density . . . . . . . . . . . . . . . . . . . . 175
    6.8 Chi-Squared Probability Density . . . . . . . . . . . . . . . . . . . . 177
    6.9 Monte Carlo Method of Numerical Integration . . . . . . . . . . . . . 179
    6.10 Sequential Random Realization . . . . . . . . . . . . . . . . . . . . . 181
    6.11 Cascaded Metropolis Algorithm . . . . . . . . . . . . . . . . . . . . . 182
    6.12 Distance and Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
    6.13 The Different Meanings of the Word Kernel . . . . . . . . . . . . . . 183
    6.14 Transpose and Adjoint of a Differential Operator . . . . . . . . . . . . 184
    6.15 The Bayesian Viewpoint of Backus (1970) . . . . . . . . . . . . . . . 190
    6.16 The Method of Backus and Gilbert . . . . . . . . . . . . . . . . . . . 191
    6.17 Disjunction and Conjunction of Probabilities . . . . . . . . . . . . . . 195
    6.18 Partition of Data into Subsets . . . . . . . . . . . . . . . . . . . . . . 197
    6.19 Marginalizing in Linear Least Squares . . . . . . . . . . . . . . . . . 200
    6.20 Relative Information of Two Gaussians . . . . . . . . . . . . . . . . . 201
    6.21 Convolution of Two Gaussians . . . . . . . . . . . . . . . . . . . . . 202
    6.22 Gradient-Based Optimization Algorithms . . . . . . . . . . . . . . . . 203
    6.23 Elements of Linear Programming . . . . . . . . . . . . . . . . . . . . 223
    6.24 Spaces and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 230
    6.25 Usual Functional Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 242
    6.26 Maximum Entropy Probability Density . . . . . . . . . . . . . . . . . 245
    6.27 Two Properties of p-Norms . . . . . . . . . . . . . . . . . . . . . . . 246
    6.28 Discrete Derivative Operator . . . . . . . . . . . . . . . . . . . . . . 247
    6.29 Lagrange Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 249
    6.30 Matrix Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
    6.31 Inverse of a Partitioned Matrix . . . . . . . . . . . . . . . . . . . . . 250
    6.32 Norm of the Generalized Gaussian . . . . . . . . . . . . . . . . . . . 250
    7 Problems 253
    7.1 Estimation of the Epicentral Coordinates of a Seismic Event . . . . . . 253
    7.2 Measuring the Acceleration of Gravity . . . . . . . . . . . . . . . . . 256
    7.3 Elementary Approach to Tomography . . . . . . . . . . . . . . . . . . 259
    7.4 Linear Regression with Rounding Errors . . . . . . . . . . . . . . . . 266
    7.5 Usual Least-Squares Regression . . . . . . . . . . . . . . . . . . . . . 269
    7.6 Least-Squares Regression with Uncertainties in Both Axes . . . . . . 273
    Contents ix
    7.7 Linear Regression with an Outlier . . . . . . . . . . . . . . . . . . . . 275
    7.8 Condition Number and A Posteriori Uncertainties . . . . . . . . . . . 279
    7.9 Conjunction of Two Probability Distributions . . . . . . . . . . . . . . 285
    7.10 Adjoint of a Covariance Operator . . . . . . . . . . . . . . . . . . . . 288
    7.11 Problem 7.1 Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 289
    7.12 Problem 7.3 Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 289
    7.13 An Example of Partial Derivatives . . . . . . . . . . . . . . . . . . . 290
    7.14 Shapes of the p-Norm Misfit Functions . . . . . . . . . . . . . . . . 290
    7.15 Using the Simplex Method . . . . . . . . . . . . . . . . . . . . . . . 293
    7.16 Problem 7.7 Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 295
    7.17 Geodetic Adjustment with Outliers . . . . . . . . . . . . . . . . . . . 296
    7.18 Inversion of Acoustic Waveforms . . . . . . . . . . . . . . . . . . . . 297
    7.19 Using the Backus and Gilbert Method . . . . . . . . . . . . . . . . . . 304
    7.20 The Coefficients in the Backus and Gilbert Method . . . . . . . . . . . 308
    7.21 The Norm Associated with the 1D Exponential Covariance . . . . . . 308
    7.22 The Norm Associated with the 1D Random Walk . . . . . . . . . . . 311
    7.23 The Norm Associated with the 3D Exponential Covariance . . . . . . 313
    References and References for General Reading 317
    Index 333

    Errata.pdf

    74.9 KB, 下载次数: 22

    InverseProblemTheory-pdf.part1.rar

    3.81 MB, 下载次数: 23

    InverseProblemTheory-pdf.part2.rar

    3.81 MB, 下载次数: 36

    InverseProblemTheory-pdf.part3.rar

    3.81 MB, 下载次数: 35

    InverseProblemTheory-pdf.part4.rar

    3.81 MB, 下载次数: 20

    InverseProblemTheory-pdf.part5.rar

    3.81 MB, 下载次数: 22

    InverseProblemTheory-pdf.part6.rar

    731.42 KB, 下载次数: 17

  • TA的每日心情
    奋斗
    2015-10-30 11:27
  • 签到天数: 55 天

    [LV.5]常住居民I

    发表于 2014-5-16 13:41:23 | 显示全部楼层
    【书    名】inverse problem theory and methods for model parameter estimation
    【作    者】 Albert Tarantola
    【出版日期】2004
    【出 版 社】SIAM
    【文件格式】 PDF
    【页    数】358
    【内容简介】the general discrete inverse problem, monte carlo methods, the least-squares criterion, least-absolute-values criterion and minimax criterion, functional inverse problems,
    【附件个数】6
    【威望要求】0
    inverse problem theory and methods for model parameter estimation.jpg
    回复 支持 反对

    使用道具 举报

    您需要登录后才可以回帖 登录 | 欢迎注册

    本版积分规则

    QQ|Archiver|手机版|小黑屋|阳光石油网 ( 鲁ICP备2021003870号-1 )

    GMT+8, 2025-1-22 18:52 , Processed in 0.051711 second(s), 22 queries .

    Powered by Discuz! X3.4 Licensed

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表